5 research outputs found

    What is the bushmeat crisis and why should we care?

    Get PDF
    Thibaut Vandervelden discusses how the growing appeal of bushmeat is destroying the second most biodiverse forest in the world

    CABE : a cloud-based acoustic beamforming emulator for FPGA-based sound source localization

    Get PDF
    Microphone arrays are gaining in popularity thanks to the availability of low-cost microphones. Applications including sonar, binaural hearing aid devices, acoustic indoor localization techniques and speech recognition are proposed by several research groups and companies. In most of the available implementations, the microphones utilized are assumed to offer an ideal response in a given frequency domain. Several toolboxes and software can be used to obtain a theoretical response of a microphone array with a given beamforming algorithm. However, a tool facilitating the design of a microphone array taking into account the non-ideal characteristics could not be found. Moreover, generating packages facilitating the implementation on Field Programmable Gate Arrays has, to our knowledge, not been carried out yet. Visualizing the responses in 2D and 3D also poses an engineering challenge. To alleviate these shortcomings, a scalable Cloud-based Acoustic Beamforming Emulator (CABE) is proposed. The non-ideal characteristics of microphones are considered during the computations and results are validated with acoustic data captured from microphones. It is also possible to generate hardware description language packages containing delay tables facilitating the implementation of Delay-and-Sum beamformers in embedded hardware. Truncation error analysis can also be carried out for fixed-point signal processing. The effects of disabling a given group of microphones within the microphone array can also be calculated. Results and packages can be visualized with a dedicated client application. Users can create and configure several parameters of an emulation, including sound source placement, the shape of the microphone array and the required signal processing flow. Depending on the user configuration, 2D and 3D graphs showing the beamforming results, waterfall diagrams and performance metrics can be generated by the client application. The emulations are also validated with captured data from existing microphone arrays.</jats:p

    Symmetric-Key-Based Authentication among the Nodes in a Wireless Sensor and Actuator Network

    No full text
    To enable today&rsquo;s industrial automation, a significant number of sensors and actuators are required. In order to obtain trust and isolate faults in the data collected by this network, protection against authenticity fraud and nonrepudiation is essential. In this paper, we propose a very efficient symmetric-key-based security mechanism to establish authentication and nonrepudiation among all the nodes including the gateway in a distributed cooperative network, without communicating additional security parameters to establish different types of session keys. The solution also offers confidentiality and anonymity in case there are no malicious nodes. If at most one of the nodes is compromised, authentication and nonrepudiation still remain valid. Even if more nodes get compromised, the impact is limited. Therefore, the proposed method drastically differs from the classical group key management schemes, where one compromised node completely breaks the system. The proposed method is mainly based on a hash chain with multiple outputs defined at the gateway and shared with the other nodes in the network

    Circuitree: A Datalog Reasoner in Zero-Knowledge

    Full text link
    corecore